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About me
• Longtime active contributor (July/Aug 

1995)
• ASF Co-founder
• Other ASF titles as well
• CTO of Covalent Technologies
• Husband, father, all around nice guy
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How did we get here?
• A short history of Apache HTTP 

Server (at least regarding 2.2)
– Apache 1.3.0 released in June 1998
– Apache 2.0a1 released in March 2000 

(at ApacheCon!)
– First GA version of Apache 2.0 released 

on April 2002: Apache 2.0.35
– Apache 2.2.0 released on Dec. 2005
– We are now at 2.2.6 (2.2.7 soonish)  
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Apache 2.0
• Apache 2.0 was designed to address 

shortcomings in 1.3
– MPM
– Module ordering dependencies
– Hooks
– Filters
– Protocol modules
– Sub-module concept
– APR
– IPV6
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So Apache 2.0 was...
• Basically a rewrite of Apache 1.3
• An opportunity to rethink how Apache 

works
• An opportunity to make setup and 

config more elegant
– de-merge proxy and cache
– better authen. and authorz
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Did we succeed?
• To a great extent yes
• But some things lagged behind
• Or didn’t quite turn out the way we 

hoped
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Why 2.2 ?
• Despite advances in 2.0.x tree, 

improvements needed to be made
• But those improvements would break 

the API
• Plus, many of them required later 

versions of APR
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Apache 2.2 Goals
• Bring all functionality up to parity
• Be an evolutionary step from 2.0
• Incremental, logical steps
• 2.0 modules require (for the most 

part) just a simple recompilation
• Keep what 2.0 did right, and improve 

on remaining features
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So what’s new in 2.2?
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So what’s new in 2.2?
• Nothing
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So what’s new in 2.2?
• Nothing
• Thanks!
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So what’s new in 2.2?
• Nothing
• Thanks!
• Be sure to tip your waiters!
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No, really...
• Large file support
• Graceful stop
• mod_dbd
• mod_filter
• Better Debugging and info
• Caching
• Event MPM
• Authn/Authz
• Proxy
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Large file support
• 2GB is no longer a stupid limit
• Much better 64 bit awareness
• And much better behavior on 32 bit 

systems
• Thanks to APR
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Graceful stop
• We all know about graceful restart
• Now Apache will also gracefully stop

– when shutting down, Apache will let 
existing requests finish

– But what about really, really long or 
nasty requests?

• GracefulShutdownTime
– # == number of seconds grace time
– 0 == forever
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Graceful start
• We have:

– graceful restart
– graceful shutdown

• How about a graceful start?
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Ha ha
• Very funny
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mod_dbd
• The problem

– Lots of modules...
– ... using lots of SQL connections
– EG: authn/authz, logging, PHP...

• Even worse with threaded MPMs
• mod_dbd manages all that for you

– ap_dbd_open, ap_dbd_prepare, ...
• Connection pooling comes to the 

party
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mod_filter
• The problem:

– filters are basically inserted 
“unconditionally”

– Blunt tool approach - bad w/ dynamic 
content

– Admins want more flexibility
• The solution:

– A dynamic chaining of filters
– Filters inserted based on req headers, 

resp headers and env-vars.
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Better Debugging
• mod_dumpio

– Dumps all IO to the error log
– Yep, all of it

• DumpIOInput On
• DumpIOOutput On
• DumpIOLogLevel Notice

– What about SSL?
• Dumping is done right after decryption or 

right before encrypting
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mod_dumpio
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mod_dumpio: dumpio_in [getline-blocking] 0 readbytes
mod_dumpio:  dumpio_in (data-HEAP): 16 bytes
mod_dumpio:  dumpio_in (data-HEAP): GET / HTTP/1.1\r\n
mod_dumpio: dumpio_in [getline-blocking] 0 readbytes
mod_dumpio:  dumpio_in (data-HEAP): 13 bytes
mod_dumpio:  dumpio_in (data-HEAP): Accept: */*\r\n
…
mod_dumpio: dumpio_out
mod_dumpio:  dumpio_out (data-HEAP): 291 bytes
mod_dumpio:  dumpio_out (data-HEAP): HTTP/1.1 200 OK\r\nDate:
Thu, 12 Oct 2006 15:35:52 GMT\r\nServer: Apache/2.2.4-dev (Unix)
DAV/2\r\nLast-Modified: Fri, 10 Dec 2004 14:17:55 GMT\r\nETag:
"7b3e83-2c-9eedeac0"\r\nAccept-Ranges: bytes\r\nContent-Length:
44\r\nKeep-Alive: timeout=5, max=98\r\n
Connection: Keep-Alive\r\nContent-Type: text/html\r\n\r\n
mod_dumpio: dumpio_out
mod_dumpio:  dumpio_out (data-FILE): 44 bytes
mod_dumpio:  dumpio_out (data-MMAP): <html><body><h1>It works!</
h1></body></html>
mod_dumpio:  dumpio_out (metadata-EOS): 0 bytes



Better Debugging
• mod_log_forensic

– forensic logging of each request
– Each request results in 2 log lines

• Initial request with unique ID
– +yQtJf8AB4AAFNXQY|GET /manual/...

• Response done “tag”
– -yQtJf8AB4AAFNXQY

– track and trace requests
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Better debugging
• mod_info:

– ?config : Just the configuration 
directives, not sorted by module

– ?hooks : Only the list of Hooks each 
module is attached to

– ?list : Only a simple list of enabled 
modules

– ?server : Only the basic server 
information
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mod_info screensnap
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mod_info screensnap
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Caching
• Dirty little 2.0 secret

– When we separated mod_proxy and 
mod_cache, mod_cache didn’t get a lot 
of TLC

• Code was not clean
• Nasty performance
• disk cache lacked good maintenance
• Lacked RFC compliance
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Apache 2.2 Caching
• No longer experimental!
• Caching stores copies of static or 

dynamic content (if possible) for quick 
access

• mod_cache:
– The caching framework

• mod_disk_cache / mod_mem_cache
– Determines cache implementation
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Caching modules
• mod_disk_cache

– Stores cached material on file system
– Key based access

• mod_mem_cache
– Stores cached material in shared 

memory cache.
– Caches open file descriptors.
– Caches content object.
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disk vs. mem
• Lots of work done on both
• mem

– fast because it uses shared memory
– locking
– restarts make cache go bye bye

• disk
– long term storage
– zero-copy transfer
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Simple Config
• Just cache CSS files
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LoadModule cache_module modules/mod_cache.so
LoadModule mem_cache_module modules/mod_mem_cache.so

CacheEnable mem /css

MCacheSize 1024
MCacheMaxObjectCount 100

MCacheMinObjectSize 1
MCacheMaxObjectSize 2048



htcacheclean
• mod_disk_cache places no limits on 

disk usage
• htcacheclean cleans up and limits 

utilization
– run manually or in daemon mode
– htcacheclean -p/var/db/httpd/cache \

             -l250M -d30
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Event MPM
• Still considered experimental
• Seeing some extensive use
• The problem:

– Those nasty keepalives
– The worker thread is stuck waiting for 

the next persistent request
• The solution:

– Pop that “waiting” connection back into 
the listener thread’s domain
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An illustration to help
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Authn / Authz
• Authorization

– Permit access to a resource based on 
who/what/where/why/when

• Authentication
– Determine who/what/where/why/when

• Two different concepts – 2.2 divides 
them.
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Two implementations
• mod_auth_basic

– Speaks PLAIN TEXT user and password 
over the wire – not secure

• mod_auth_digest
– Speaks a hash of the host digest 

domain, user and password, this is much 
more secure over http: connections!

• Most browser supports Digest today, 
many ‘custom clients’ don’t
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Providers for info
• mod_authn_file

– the classic, a flat list of users and slows 
quickly as the list grows

• mod_authn_dbm
– the classic, faster solution, plug into 

Berkeley DB, GDBM, SDBM etc
• mod_authn_dbd

– the newest solution, use an Oracle / 
MySQL table for your user store
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Providers for info
• mod_authn_anon

– the Anonymous backstop, no password 
validation

• mod_authn_default
– the absolute backstop (not-authenticated 

result)
• mod_authn_alias

– Group the many directives of a provider 
into an <AuthnProviderAlias > block.
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Authz
• mod_authz_user

– Grant/restrict access based on 
Authenticated user

• mod_authz_groupfile
– Store group -> users associations in a 

flat file
• mod_authz_dbm

– Store user || group in a Berkley DB / 
GDBM flat database

•
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Authz
• mod_authz_owner

– Access files by OWNER, either user or 
group

• mod_authz_host
– What you knew as ‘access’, restrict by 

the client’s IP/hostname
• mod_authz_default

– the ‘backstop’ when no authorization is 
matched.

•
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Authn / Authz
• mod_authnz_ldap

– Both authn user and authz group 
principals apply at once to users 
authorized against an LDAP data store.

– Basically, it does both

37



Simple example
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AuthType Basic
AuthName "Restricted Files"
AuthUserFile /path-to/htpasswd
AuthBasicProvider file
Require user jim



Not so simple
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<AuthnProviderAlias ldap ldap-alias1>
    AuthLDAPBindDN cn=youruser,o=ctx
    AuthLDAPBindPassword yourpassword
    AuthLDAPURL ldap://ldap.host/o=ctx
</AuthnProviderAlias>

Alias /secure /webpages/secure
<Directory /webpages/secure>
    Order deny,allow
    Allow from all
    AuthBasicProvider  ldap-alias1
    AuthType Basic
    AuthName LDAP_Protected_Place
    AuthzLDAPAuthoritative off
    require valid-user
</Directory>



Interested in more 2.2 auth?
• Attend Brad Nicholes’ session
• Friday, 4pm
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Proxy
• Becoming a robust but generic proxy 

implementation
• Supports various protocols

– HTTP, HTTPS, CONNECT, FTP
– AJP, FastCGI (coming “soonish”)

• Load balancing
• Clustering, failover
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mod_proxy_ajp
• Apache can now talk AJP with Tomcat 

directly
• Other proxy improvements make this 

even more exciting
• mod_jk alternative
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Load Balancer
• mod_proxy can do native load 

balancing
– weight by actual requests
– weight by traffic

• LB algo’s are impl as providers
– easy to add
– no core code changes required
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Load Balancer
• Backend connection pooling
• Sticky session support
• Cluster set with failover

– Lump backend servers as sets
– balancer will try lower-valued sets first

• Hot standby
• Configurable in real-time
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Example
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<Proxy balancer://foo>
  BalancerMember http://php1:8080/     loadfactor=1
  BalancerMember http://php2:8080/     loadfactor=4
  BalancerMember http://phpbkup:8080/  loadfactor=4 status=+h
  ProxySet lbmethod=bytraffic
</Proxy>
<Proxy balancer://javaapps>
  BalancerMember ajp://tc1:8089/     loadfactor=1
  BalancerMember ajp://tc2:8089/     loadfactor=4
  ProxySet lbmethod=byrequests
</Proxy>

ProxyPass /apps/ balancer://foo/
ProxyPass /serv/ balancer://javaapps/

ProxyPass /images/ http://images:8080/

http://php1:8080
http://php1:8080
http://php2:8080
http://php2:8080
http://phpbkup:8080
http://phpbkup:8080
http://images:8080
http://images:8080


Admin 
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Oh yeah
• ProxyPassMatch

– ProxyPassMatch ^(/.*\.gif)$ \
http://backend.example.com$1
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Want more 2.2 proxy info?
• Attend Jim Jagielski’s session
• Friday, 3pm
• I hear he’s pretty good...
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What’s on the horizon?
• Some additional potential backports

– mod_substitute
– FastCGI proxy module

• True async server support
– serf: http://code.google.com/p/serf/ ?

• Code name: Amsterdam
– tell us !
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Thanks!
• Q&A
• Resources:

– http://httpd.apache.org/
– dev@httpd.apache.org
– A certain Open Source support provider
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