
What’s new in Apache
HTTP Server 2.2

Jim Jagielski
http://www.jimjag.com/

jim@jaguNET.com

http://www.jimjag.com
http://www.jimjag.com
mailto:jim@jaguNET.com
mailto:jim@jaguNET.com

About me
• Longtime active contributor (July/Aug

1995)
• ASF Co-founder
• Other ASF titles as well
• CTO of Covalent Technologies
• Husband, father, all around nice guy

2

How did we get here?
• A short history of Apache HTTP

Server (at least regarding 2.2)
– Apache 1.3.0 released in June 1998
– Apache 2.0a1 released in March 2000

(at ApacheCon!)
– First GA version of Apache 2.0 released

on April 2002: Apache 2.0.35
– Apache 2.2.0 released on Dec. 2005
– We are now at 2.2.6 (2.2.7 soonish)

3

Apache 2.0
• Apache 2.0 was designed to address

shortcomings in 1.3
– MPM
– Module ordering dependencies
– Hooks
– Filters
– Protocol modules
– Sub-module concept
– APR
– IPV6

4

So Apache 2.0 was...
• Basically a rewrite of Apache 1.3
• An opportunity to rethink how Apache

works
• An opportunity to make setup and

config more elegant
– de-merge proxy and cache
– better authen. and authorz

5

Did we succeed?
• To a great extent yes
• But some things lagged behind
• Or didn’t quite turn out the way we

hoped

6

Why 2.2 ?
• Despite advances in 2.0.x tree,

improvements needed to be made
• But those improvements would break

the API
• Plus, many of them required later

versions of APR

7

Apache 2.2 Goals
• Bring all functionality up to parity
• Be an evolutionary step from 2.0
• Incremental, logical steps
• 2.0 modules require (for the most

part) just a simple recompilation
• Keep what 2.0 did right, and improve

on remaining features

8

So what’s new in 2.2?

9

So what’s new in 2.2?
• Nothing

9

So what’s new in 2.2?
• Nothing
• Thanks!

9

So what’s new in 2.2?
• Nothing
• Thanks!
• Be sure to tip your waiters!

9

No, really...
• Large file support
• Graceful stop
• mod_dbd
• mod_filter
• Better Debugging and info
• Caching
• Event MPM
• Authn/Authz
• Proxy

10

Large file support
• 2GB is no longer a stupid limit
• Much better 64 bit awareness
• And much better behavior on 32 bit

systems
• Thanks to APR

11

Graceful stop
• We all know about graceful restart
• Now Apache will also gracefully stop

– when shutting down, Apache will let
existing requests finish

– But what about really, really long or
nasty requests?

• GracefulShutdownTime
– # == number of seconds grace time
– 0 == forever

12

Graceful start
• We have:

– graceful restart
– graceful shutdown

• How about a graceful start?

13

Ha ha
• Very funny

14

mod_dbd
• The problem

– Lots of modules...
– ... using lots of SQL connections
– EG: authn/authz, logging, PHP...

• Even worse with threaded MPMs
• mod_dbd manages all that for you

– ap_dbd_open, ap_dbd_prepare, ...
• Connection pooling comes to the

party
15

mod_filter
• The problem:

– filters are basically inserted
“unconditionally”

– Blunt tool approach - bad w/ dynamic
content

– Admins want more flexibility
• The solution:

– A dynamic chaining of filters
– Filters inserted based on req headers,

resp headers and env-vars.
16

Better Debugging
• mod_dumpio

– Dumps all IO to the error log
– Yep, all of it

• DumpIOInput On
• DumpIOOutput On
• DumpIOLogLevel Notice

– What about SSL?
• Dumping is done right after decryption or

right before encrypting

17

mod_dumpio

18

mod_dumpio: dumpio_in [getline-blocking] 0 readbytes
mod_dumpio: dumpio_in (data-HEAP): 16 bytes
mod_dumpio: dumpio_in (data-HEAP): GET / HTTP/1.1\r\n
mod_dumpio: dumpio_in [getline-blocking] 0 readbytes
mod_dumpio: dumpio_in (data-HEAP): 13 bytes
mod_dumpio: dumpio_in (data-HEAP): Accept: */*\r\n
…
mod_dumpio: dumpio_out
mod_dumpio: dumpio_out (data-HEAP): 291 bytes
mod_dumpio: dumpio_out (data-HEAP): HTTP/1.1 200 OK\r\nDate:
Thu, 12 Oct 2006 15:35:52 GMT\r\nServer: Apache/2.2.4-dev (Unix)
DAV/2\r\nLast-Modified: Fri, 10 Dec 2004 14:17:55 GMT\r\nETag:
"7b3e83-2c-9eedeac0"\r\nAccept-Ranges: bytes\r\nContent-Length:
44\r\nKeep-Alive: timeout=5, max=98\r\n
Connection: Keep-Alive\r\nContent-Type: text/html\r\n\r\n
mod_dumpio: dumpio_out
mod_dumpio: dumpio_out (data-FILE): 44 bytes
mod_dumpio: dumpio_out (data-MMAP): <html><body><h1>It works!</
h1></body></html>
mod_dumpio: dumpio_out (metadata-EOS): 0 bytes

Better Debugging
• mod_log_forensic

– forensic logging of each request
– Each request results in 2 log lines

• Initial request with unique ID
– +yQtJf8AB4AAFNXQY|GET /manual/...

• Response done “tag”
– -yQtJf8AB4AAFNXQY

– track and trace requests

19

Better debugging
• mod_info:

– ?config : Just the configuration
directives, not sorted by module

– ?hooks : Only the list of Hooks each
module is attached to

– ?list : Only a simple list of enabled
modules

– ?server : Only the basic server
information

20

mod_info screensnap

21

mod_info screensnap

22

Caching
• Dirty little 2.0 secret

– When we separated mod_proxy and
mod_cache, mod_cache didn’t get a lot
of TLC

• Code was not clean
• Nasty performance
• disk cache lacked good maintenance
• Lacked RFC compliance

23

Apache 2.2 Caching
• No longer experimental!
• Caching stores copies of static or

dynamic content (if possible) for quick
access

• mod_cache:
– The caching framework

• mod_disk_cache / mod_mem_cache
– Determines cache implementation

24

Caching modules
• mod_disk_cache

– Stores cached material on file system
– Key based access

• mod_mem_cache
– Stores cached material in shared

memory cache.
– Caches open file descriptors.
– Caches content object.

25

disk vs. mem
• Lots of work done on both
• mem

– fast because it uses shared memory
– locking
– restarts make cache go bye bye

• disk
– long term storage
– zero-copy transfer

26

Simple Config
• Just cache CSS files

27

LoadModule cache_module modules/mod_cache.so
LoadModule mem_cache_module modules/mod_mem_cache.so

CacheEnable mem /css

MCacheSize 1024
MCacheMaxObjectCount 100

MCacheMinObjectSize 1
MCacheMaxObjectSize 2048

htcacheclean
• mod_disk_cache places no limits on

disk usage
• htcacheclean cleans up and limits

utilization
– run manually or in daemon mode
– htcacheclean -p/var/db/httpd/cache \

 -l250M -d30

28

Event MPM
• Still considered experimental
• Seeing some extensive use
• The problem:

– Those nasty keepalives
– The worker thread is stuck waiting for

the next persistent request
• The solution:

– Pop that “waiting” connection back into
the listener thread’s domain

29

An illustration to help

30

Actual workers

Storage of
“Ready” sockets

Listener
Sockets of
“interest”

An illustration to help

30

Actual workers

Storage of
“Ready” sockets

Listener
Sockets of
“interest”

An illustration to help

30

Actual workers

Storage of
“Ready” sockets

Listener
Sockets of
“interest”

An illustration to help

30

Actual workers

Storage of
“Ready” sockets

Listener
Sockets of
“interest”

An illustration to help

30

Actual workers

Storage of
“Ready” sockets

Listener
Sockets of
“interest”

An illustration to help

30

Actual workers

Storage of
“Ready” sockets

Listener
Sockets of
“interest”

Keepalive connection

An illustration to help

30

Actual workers

Storage of
“Ready” sockets

Listener
Sockets of
“interest”

Keepalive connection

Authn / Authz
• Authorization

– Permit access to a resource based on
who/what/where/why/when

• Authentication
– Determine who/what/where/why/when

• Two different concepts – 2.2 divides
them.

31

Two implementations
• mod_auth_basic

– Speaks PLAIN TEXT user and password
over the wire – not secure

• mod_auth_digest
– Speaks a hash of the host digest

domain, user and password, this is much
more secure over http: connections!

• Most browser supports Digest today,
many ‘custom clients’ don’t

32

Providers for info
• mod_authn_file

– the classic, a flat list of users and slows
quickly as the list grows

• mod_authn_dbm
– the classic, faster solution, plug into

Berkeley DB, GDBM, SDBM etc
• mod_authn_dbd

– the newest solution, use an Oracle /
MySQL table for your user store

33

Providers for info
• mod_authn_anon

– the Anonymous backstop, no password
validation

• mod_authn_default
– the absolute backstop (not-authenticated

result)
• mod_authn_alias

– Group the many directives of a provider
into an <AuthnProviderAlias > block.

34

Authz
• mod_authz_user

– Grant/restrict access based on
Authenticated user

• mod_authz_groupfile
– Store group -> users associations in a

flat file
• mod_authz_dbm

– Store user || group in a Berkley DB /
GDBM flat database

•
35

Authz
• mod_authz_owner

– Access files by OWNER, either user or
group

• mod_authz_host
– What you knew as ‘access’, restrict by

the client’s IP/hostname
• mod_authz_default

– the ‘backstop’ when no authorization is
matched.

•
36

Authn / Authz
• mod_authnz_ldap

– Both authn user and authz group
principals apply at once to users
authorized against an LDAP data store.

– Basically, it does both

37

Simple example

38

AuthType Basic
AuthName "Restricted Files"
AuthUserFile /path-to/htpasswd
AuthBasicProvider file
Require user jim

Not so simple

39

<AuthnProviderAlias ldap ldap-alias1>
 AuthLDAPBindDN cn=youruser,o=ctx
 AuthLDAPBindPassword yourpassword
 AuthLDAPURL ldap://ldap.host/o=ctx
</AuthnProviderAlias>

Alias /secure /webpages/secure
<Directory /webpages/secure>
 Order deny,allow
 Allow from all
 AuthBasicProvider ldap-alias1
 AuthType Basic
 AuthName LDAP_Protected_Place
 AuthzLDAPAuthoritative off
 require valid-user
</Directory>

Interested in more 2.2 auth?
• Attend Brad Nicholes’ session
• Friday, 4pm

40

Interested in more 2.2 auth?
• Attend Brad Nicholes’ session
• Friday, 4pm

40

Proxy
• Becoming a robust but generic proxy

implementation
• Supports various protocols

– HTTP, HTTPS, CONNECT, FTP
– AJP, FastCGI (coming “soonish”)

• Load balancing
• Clustering, failover

41

mod_proxy_ajp
• Apache can now talk AJP with Tomcat

directly
• Other proxy improvements make this

even more exciting
• mod_jk alternative

42

Load Balancer
• mod_proxy can do native load

balancing
– weight by actual requests
– weight by traffic

• LB algo’s are impl as providers
– easy to add
– no core code changes required

43

Load Balancer
• Backend connection pooling
• Sticky session support
• Cluster set with failover

– Lump backend servers as sets
– balancer will try lower-valued sets first

• Hot standby
• Configurable in real-time

44

Example

45

<Proxy balancer://foo>
 BalancerMember http://php1:8080/ loadfactor=1
 BalancerMember http://php2:8080/ loadfactor=4
 BalancerMember http://phpbkup:8080/ loadfactor=4 status=+h
 ProxySet lbmethod=bytraffic
</Proxy>
<Proxy balancer://javaapps>
 BalancerMember ajp://tc1:8089/ loadfactor=1
 BalancerMember ajp://tc2:8089/ loadfactor=4
 ProxySet lbmethod=byrequests
</Proxy>

ProxyPass /apps/ balancer://foo/
ProxyPass /serv/ balancer://javaapps/

ProxyPass /images/ http://images:8080/

http://php1:8080
http://php1:8080
http://php2:8080
http://php2:8080
http://phpbkup:8080
http://phpbkup:8080
http://images:8080
http://images:8080

Admin

46

Oh yeah
• ProxyPassMatch

– ProxyPassMatch ^(/.*\.gif)$ \
http://backend.example.com$1

47

Want more 2.2 proxy info?
• Attend Jim Jagielski’s session
• Friday, 3pm
• I hear he’s pretty good...

48

What’s on the horizon?
• Some additional potential backports

– mod_substitute
– FastCGI proxy module

• True async server support
– serf: http://code.google.com/p/serf/ ?

• Code name: Amsterdam
– tell us !

49

http://code.google.com/p/serf/
http://code.google.com/p/serf/

Thanks!
• Q&A
• Resources:

– http://httpd.apache.org/
– dev@httpd.apache.org
– A certain Open Source support provider

50

http://httpd.apache.org
http://httpd.apache.org
mailto:dev@httpd.apache.org
mailto:dev@httpd.apache.org

